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Weinberger and Skiansky

1. Introduction, Background and Goals

A motivating assumption of this research is that insights into the structure
and operation of the brain can inspire important ideas for the design of intelligent

machines, in particular machines that detect and classify auditory and visual
signals buried in noise.

In this project we focus on the ability of the auditory cortex to adapt its
sensitivity to pure tones. Our objective is a model of learning that will enable us to

predict changes in the receptive fields of pyramidal cells in the auditory cortex in
response to conditioning. This model must account for the receptive fields before

conditioning as well as for the conditioning. To do this our model is constructed
in two major parts: a lpc ..ce that accounts for the preconditioned states of
the pyramidal neurons, and a global process that accounts for the dispersed
impact of conditioning across the pyramidal neurons.

In earlier models of sensory system function the processing of sensory
information is accomplished by a hierarchical organization of fixed feature

detectors. However, recent findings in awake behaving animals have shown that
neuronal tuning to acoustic features, e.g., frequency, is systematically altered in
the auditory cortex as a result of learning. Responses to training signals are

increased whereas responses to other stimuli are decreased, often enough to
make the training signal become the most potent stimulus for a cell (Diamond

and Weinberger, 1986; 1989; Bakin and Weinberger, 1990). This adaptive filtering

appears to be a fundamental property of auditory signal processing.

Adaptive filtering in the auditory cortex represents the impact of behavioral
training on the receptive fields of neurons. The receptive field of a neuron is

determined by the stimulus parameters to which a cell responds. A frequency
receptive field typically is a bell-shaped function of frequency, similar to that of an

electronic band-pass filter, centered at a "best" frequency. Adaptive filtering is

said to have occurred when conditioning with one frequency results in a
systematic change (plasticity) of the receptive field that is highly specific to the
conditioning signal, often moving the best frequency to or toward the conditioning
frequency.

The goal of this project is to formulate a mathematical model of
conditioning-induced adaptive filtering in the auditory cortex. In the following
sections we briefly report how the relevant neurophysiological data were obtained
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and then present in detail our "global-local model" of adaptive auditory filtering.
This model successfully accounts for the adaptive filtering operating
simultaneously at two sites of the auditory cortex, and accounts for the effect of the

interaction between these sites on their receptive fields.

2. Neurophysiological Protocol

2.1. Preparation
Recordings of neuronal responses to tones were obtained from the auditory

cortex of adult male guinea pigs (Cavia Porcellus). All procedures involving

subjects were conducted in strict accordance with approved protocols under the
supervision of the University Veterinarian and Animal Research Committee.
Neuronal discharges were obtained from fine wire microelectrodes which were
implanted 1-2 weeks prior to training when the subjects were under general

anesthesia. Following routine post-operative care, the subjects were adapted to
head stabilization in a hammock, within an illuminated acoustic chamber for 3-4

days (3 hour sessions). Head stabilization is essential to insure constancy of
acr, stic stimuli at the ear during the determination of receptive fields. Subjects
readily adapted to this protocol as determined by heart rate adaptation In many

cases, subjects were trained while awake but receptive fields were obtained before
and after training when subjects were under general anesthesia (sodium
pentobarbital or ketamine-xylezine). Adaptive filtering was expressed under

anesthesia as well as in the waking state. For training, subjects received a tone
(the "training tone" or "conditioned stimulus") (six sec.) followed by a brief (0.5
sec) very mild (1-2 ma) footshock (unconditioned stimulus, US). Learning that the , '

tone predicts the US is very rapid. Only twenty pairings were presented, over a
forty minute session and learning was indexed by the development of a change in 4

heart rate or a change in ongoing behavior when the training tone was presented

(Bakin and Weinberger, 1990; Edeline and Weinberger, 1991; 1992).

2.2 Acoustic Stimulation and Neuronal Recording
Neuronal discharges were recorded by conventional neurophysiological -od

amplifiers (bandpass 0.3-3.0 kHz) and collected by a Brainwave Workstation ........

(Brainwave Systems, Denver, Co.). Receptive fields were obtained by presenting

tones of calibrated intensity and frequency (0-90 db sound pressure level [SPLI,
0.5-45.0 kHz, 50 -100 msec.) to the ear contralateral to the recording electrodes, bility Codes

Statement A per telecon avDist mvail and/or
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under the control of a Brainwave Systems Digital Signal Processer. Stability and
reliability checks were routinely performed. All receptive fields were based on
twenty repetitions of the tone by intensity protocol.

23. Determination of Frequency Receptive Fields
Quantified frequency receptive fields were obtained by determining the

number of discharges to each tone stimulus using programs developed in this
laboratory. The pre-tone (background) rate of discharge was subtracted from the
evoked discharge to prevent spurious effects on receptive fields due to random
changes in background rate. Data presented in this report were obtained from
single units or small clusters which displayed the same characteristics as those
of single unit responses. Dominant tuned responses were those occurring 10-50
ms. after tone onset.

Receptive fields were determined immediately before and immediately
following behavioral training (i.e., "conditioning") as well as at various retention
times up to several weeks following training. Because the effects of training were
similar regardless of the time at which receptive fields were determined after
training, the mathematical model pertains to all training effects. A quantitative

analysis of the effects of training was obtained for each case by subtracting the
pre-training receptive field from the post-training receptive field(s). These

functions are hereafter referred to as "RF difference functions" (see Section 3.0).

3.0. Neurophysiological Findings

3.1. Introduction

As noted in Section 1.0, the empirical basis for the formulation of a
mathematical model of adaptive filtering were the findings that conditioning
"retunes" the auditory cortex such that frequency receptive fields are altered to
"favor" the processing of behaviorally important stimuli. Specifically, responses to
the frequency of the training tone (conditioned stimulus, CS) are increased
whereas responses to other tones, including the pre-training most effective tone

(the "best frequency", BF) are reduced. In mary cases, these opposite changes are
sufficiently large so that the CS becomes the new BF, i.e., the cells are completely
retuned to the CS frequency. Within a discussion of our Local-Global Model

(Section 4), this is referred to as "complete" learning. In other cases, there is
either a shift of the BF toward but not completely to the CS frequency. If the CS
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frequency is at a large frequency distance from the BF (e.g., > 1.0 octaves), or if the

pre-training response to the CS frequency is very weak (i.e., the CS frequency is

outside of the receptive field of the cells being studied), then there may be a

decrease at the BF and an increase at the CS without any actual shift of the BF.

Whatever the detailed expression of adaptive filtering, the processing of the

training tone is facilitated with reference to other acoustic frequencies. Thus, the

receptive field or "neuronal filter" is modified in a highly specific way by

conditioning to emphasize behaviorally important acoustic frequencies.

3.2. Source of Adaptive Filtering in the Auditory Cortex

The source of adaptive filtering in the auditory cortex is an issue which lies

within the scope of this project because the mathematical model should account

for how adaptive filtering is produced by the brain.

Of particular relevance, the Model assumes that adaptive filtering in the

auditory cortex does not simply arise subcortically and is then projected to the

auditory cortex, where it is detected by recording electrodes. Rather, the Model

assumes that adaptive filtering actually arises in the auditory cortex. Moreover, it

does so by combining two subcortical sources of input: (1) a highly specific and

unchanging acoustic frequency input which specifies the current frequency in the

acoustic environment, as transduced by the cochlea; (2) an auditory non-

frequency specific input which serves as a "training signal" to the cortex,

indicating the behavioral importance (i.e., acquired signal value) of the current

acoustic frequency.

This architectural substrate is well substantiated by previous empirical

research from many laboratories (reviewed in Weinberger et al, 1984). Thus, the

auditory cortex receives dual projections from the auditory thalamus: (1) the

auditory lemniscal line from the ventral medial geniculate (MGv); (2) the auditory

non-lemniscal pathfrom the magnocellular mediil geniculate (MGm). As

previously emphasized (Weinberger et al, 1990a,b), the MGv does not alter its

response to tones regardless of their acquired signal value; in contrast, the MGm

rapidly increases its responses to tones as they become behaviorally important due

to training. During CS-US pairing trials, the MGv provides essentially unaltered,

detailed frequency input to the auditory cortex. In contrast, the MGm, which

receives both CS and US input, is probably the first site of associative plasticity.

However, its neurons are very broadly tuned and so cannot provide detailed

frequency information to the auditory cortex.
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In addition to these findings, it was necessary to determine whether any

plasticity of receptive fields occurs with the MGv and the MGm and if so, whether

it accounts for cortical adaptive filtering. Consequently, we performed appropriate

experiments. Within the MGv, adaptive filtering is weak, transient or non-

existent and could not account for adaptive filtering in the auditory cortex (Edeline

and Weinberger, 1991). Within the MGm, receptive field plasticity does occur but

its characteristics are very different from those which characterize the auditory

cortex and could not account for adaptive filtering in the cortex (Edeline and

Weinberger, 1992). Accordingly, both recordings obtained during training trials

and recordings of receptive fields obtained after training trials establish that

adaptive filtering in the cortex is not simply a reflection of adaptive filtering

subcortically. Rather, a new process does develop at the cortical level. The MGv

provides detailed frequency information and the MGm provides information about

the behavioral importance of an acoustic stimulus. It is within the auditory cortex

that these two inputs are combined to produce cortical adaptive filtering.

Our mathematical model is based closely on these established

neurobiological findings. Thus, within the Model, the MGv input to the cortex

serves to provide detailed but unchanging frequency information and the MGm

input serves as the training input (see Section 4).

The Importance of Simultaneous Recordings from Different Cortical Sites

Although our discovery of adaptive filtering in the auditory cortex provided

the impetus for mathematical modeling, the prior data were deemed insufficient

to develop a powerful model which would provide deep insights into the processes

which produce adaptive filtering.

We considered the prior data insufficient because they were obtained from

only one site within the auditory cortex within a single training session. There

were compelling reasons to hypothesize that adaptive filtering did not develop

only at the randomly-selected recording site within the frequency representation

in the auditory cortex, but rather developed across the representational cortical

mantle. Indeed, we specifically predicted that the area of representation for the

training fB'equency would increase (Weinberger et al, 1990a,b), a prediction which

subsequently has received strong empirical support (Recanzone et al, 1991;

Scheich & Simonis, 1991).

Given the likelihood that adaptive filtering is a fundamental process which

encompasses the frequency representation of the entire primary auditory cortex,
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it was evident that cortical interactions ("global learning", see Section 4) which

are likely to exist could not be detected if recordings were confined to a single

cortical site. Therefore, in the current project, we undertook to obtain recordings

simultaneously from two sites within different parts of the frequency

representation for which training-induced interactions within the cortical

network would capable of detection and characterization.

This proved to be a formidable task because this had to be accomplished in

waking, behaving subjects; moreover, the simultaneous recordings had to be

maintained continually from the pre-training period, through behavioral training

(often in moving subjects) to the completion of post-training receptive field

determinations. Nevertheless we were successful, and so were able to provide the

needed quantitative neurophysiological receptive field data which enabled the

formulation and testing of our global-local model.

. Simultaneous Observation of Adaptive Filtering at Two Sites

In this section, we describe an example of adaptive filtering at two sites

where receptive fields were observed simultaneously before and after

conditioning. At both sites, modifications of receptive fields met the definition of

adaptive filtering, i.e., facilitation of the processing of the conditioning frequency

vs. non-conditioning frequencies.

Figure 3.1 presents quantified receptive fields both pretraining and

posttraining (upper panels) and the receptive field difference functions (post

minus pretraining receptive fields, lower panels) for electrodes 2 and 3 from

subject BW07; of five implanted electrodes, these were the only recording sites

which yielded adequate recordings throughout the session. In this training

session, the training frequency (CS) was 2.5 kHz.

Pretraining, electrode #2 responded best to frequencies below 1 kHz; its BF

was 0.75 kHz. However, posttraining its tuning shifted drastically; its BF

changed to 2.5 kHz, that is, its new BF was at the frequency of the CS ("complete

learning"). The lower panel, showing the RF difference function for this

electrode, depicts how training altered the tuning at this recording site. It is clear

that training caused increased responses at some frequencies and decreased

responses at other frequencies. The largest increases in response were centered

on the CS frequency, and indeed the absolute largest increased response was at

the CS frequency itself. The largest decreases were centered on the pretraining

BF, and in fact the largest absolute decrease was exactly at the pretraining BF.
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Electrode #3 was located anterior to electrode #2 and so was tuned to higher

frequencies. Pretraining, its BF was 16.0 kHz . There was no response at the CS
frequency of 2.5 kHz;indeed, 2.5 kHz produced a slight suppression of activity at
this recording site. Thus, the BF was more than 2.5 octaves above the CS
frequency. At this large octave (and anatomical) distance, one would not expect a

shift of tuning to or even toward the CS, because the CS frequency was outside of
the receptive field. In fact, there was no large change of the BF posttraining; it

actually shifted slightly higher, to 18.0 kHz. Nonetheless, conditioning did have a

frequency specific effect. Posttraining, the CS frequency produced a very clear
excitatory response. Moreover, responses to frequencies between the CS frequency

(2.5 kHz) and 10.0 kHz increased (see the RF difference function in the lower

panel). The overall result was to increase the bandwidth of tuning such that it
included the lower frequencies, down to the CS frequency ("partial learning"). In

summary, conditioning altered the tuning so that responses at or on the high
frequency side of the CS frequency were facilitated.

Overall, this example shows adaptive tuning which developed
simultaneously at two widely separated recording sites within the orderly

frequency representation of the primary auditory cortex. When the CS frequency

is within the receptive field (electrodes #2), then a large shift in tuning can occur,

even complete retuning so that the training frequency becomes the BF. When the

CS frequency is not within the receptive field (electrode #3), then the BF does not
shift to or toward the CS frequency, but responses to the CS frequency can still
increase (indeed, be converted from suppression to clear excitation) and

frequencies between the CS and the BF also exhibit facilitated responses. In short,
it seems that adaptive filtering occurs across the frequency representation. The

challenge, then, is to formulate a mathematical model which can account for

such findings. We now consider our global-local model, the major focus of this

project.

4. The Global-Local Model of Adaptive Filtering

4.1. Introduction
In this section, we present our "global-local model of adaptive filtering". We will
first describe the model (Section 4.1), then consider in detail "global conditioning"

(Section 4.2), followed by "local conditioning" (Section 4.3). We conclude the

presentation of our model with a consideration of its neurophysiological
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interpretation. Our evaluation of the model's ability to account for the
neurophysiological findings of adaptive filtering is presented in Section 5.0.

4.1.1. Global and Local Prcse

Our global-local model represents the receptive fields of the auditory cortex
as a set of parallel signal processors or, equivalently, as a single-input multiple-

output system. This is illustrated in Figure 4.1.

C (1M1

H sin(27t t44) AUDITORY

CORTEX C 2 )

C I M

figure 4.1 Receptive fields in the auditory cortex.

Here each cortical output ci ( ) represents the number of spikes per second of
the ith pyramidal cell as a function of the amplitude H and frequency of the

stimulus tone. Each such output, viewed as a finction of H and 4, is a receptive

field. Conditioning affects each receptive field in a manner that depends partly on
ci ( ) and its neighboring cells (a local effect) before conditioning, and partly on

pyramidal-cell-independent aspects of conditioning (a global effect).
Thus our model consists of two major components: a Jc process and a

EghalProcess. This is reflected in the structure of the model: a neural network
consisting of three layers. The first layer is a set of n acoustic resonators. The

second is a global layer, and the third is a local layer. The details of this structure

are described in the next section.

9
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4.1.2. The Structure of the Model

Our model is structured as a three layer neural network, illustrated in
Figure 4.2. The first layer is a set of resonators, the kth of which produces an
output vk (4) in response to the signal H sin (27T + 0). In this model the phase 0

is ignored by all of the layers. The present model does not account for H, but since
we didn't study the effect of H in this project period, we omit H from our symbols

for the current model. We expect to introduce H in later developments of our
model.

The outputs of the global and local layers are represented as functions of t,
where t denotes the stage of conditioning. The preconditioned state of the system
occurs at t = 0. The postconditioned state of the system occurs at t = 1.

The global layer consists of two components: a global feature extractor and a
global trainer. The global feature extractor receives all of the vk ( )'s (there are n
of them) to produce a set of m features {yr(O, )} by a set of m linear summators,
each summator formed by a set of weights twkr (0)). Usually m<<n. This

structure is illustrated in Figure 4.3. We denote these weights by a matrix W (0).
Global training adjusts W (0) in response to conditioning. This adjustment

is represented compactly by a small set of global training parameters (er). During

conditioning the auditory cortex receives a strong sinusoidel signal at the
conditioning frequency 4, followed shortly thereafter by an input which signals

that the reinforcement has occurred. In our model the conditioning process is

enabled only when g = 1, where g is a conditioning control signal as indicated in
Figure 4.2. When there is no conditioning, g = 0.

The local layer consists of 1 components, each component associated with a

single pyramidal cell. Each component consists of a local discriminant and a
local trainer, and produces the output ci ( ). The local discriminant receives all of
the features {yr(O), )) and the global training parameters ter) (there are m of them)
to produce the response ci(t,k) by a linear summator formed by a set of weights

{Air(t)) (see Figure 4.3). We denote these weights by a vector A (t). Each receptive
field ci(t,t) output is the average number of spikes per second in response to a tone
of amplitude H and frequency 4. The local trainer produces a local scaling effect
represented by local scaling parameter hi and adjusts A (0) in response to a) the

conditioning control signal g, b) the set of inputs (y1(0,4)), c) the global training

parameters (er), and d) the receptive field ci(0,4).

10
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4.1.3. The Layers of the Model

Below we describe each of the three layers.

4.1.3.1. The Resonators

The kth resonator produces an output vk(4) =v(4-k o), where v(4) is a positive

even function of 4. In our simulations we assumed that

I .5(i + cos 1EI for W1<1 (41
V()=Ibb 

(4.1)

0 otherwise

Figure 4.4 describes the general kernel shape. Figure 4.4(b) describes the
kernels in a range of frequencies. We denote the number of kernels by n. This
number may be large -- perhaps several hundred.

4.1.3.2. The Global Layer

This layer consists of a global feature extractor and a global trainer. At t = 0
the outputs of the global layer formed in accordance with the following equations:

(4.2)

Yr(0 ,4) = w,(O)Vk( (r=,...,m),
k=1

er = 1 for all r.

At t = 1 er is revised to reflect the tuning to the conditioning frequency c.

13
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4.1.3. The Local Layer.

This layer consists of a local trainer and a set of m local discriminants for

each of the I output signals 1ck (t,4)) (k = 1,...,1). This is illustrated in Figure 4.3

for t =0. The ith local discriminant transforms lyr(t,4)} (r = 1,...,m) into ci (t,4) by

the following linear equation:

M (4.3)
(,)= Air(OrO i = 1..

r=I

4.L. Operation of the Network

In this section we describe how the model operates during the conditioning

process.

Preconditioning stage ( t = 0)

Step 1 : Initialize the network parameters and weights.

Step 2:

n

Yr(O,4) I Wkr (O)Vk() r= 1,..
k= 1

Step 3:

m
Ci(0,) = E Air(OYr(O,) i= 1 (4.5)

r=l145

Postconditionine staze ( t = 1)

In this stage the weights of Air(0)'s and wkr(O)'s are adjusted in response to

the conditioning frequency 4 to predict the postconditioning stage. First the

wkr(O)'s are adjusted by the global trainer in terms of the global training

15
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parameters (er}. Then the local trainer produces a local scaling effect on the

features {yr(0,4)}, and adjusts the Air(O)'s.

Step 4 (global training):
Estimate the global training parameters (er}, by the procedure described in

Section 4.2.2.

Step 5 (local training begins):

Compute wkr(1) by the equation:

wkAl) = wk}O) + Awk = wkjO) = hiewkO) for k =1,...,n; r=,....m (4.6)

where hi is a local scaling parameter, determined by a procedure described in

Section 4.3.2.

Compute the features {yr(1,4)} by the equation:

n

Yr(1, )= yr(0,)+hi, erwkr(0)vk r = (4.7)
k= I

Step 6 (continuation of local training):

Air (1) = Air (0) + AAir for r = 1,...,m; i = 1,...,l. (4.8)

The determination of AAir is described in Section 4.3.3

Step 7 (computation of the modeled receptive fields of the pyramidal neurons):

m

ci(1,k)= A[Air(1,l0 fori= 1,..., 1- (49)

r=1

4.2. Global training

In this section we describe the details of global conditioning in our model.
The global layer a) reduces the relatively large number of resonator inputs vk(4) to

a small number of features Yr (O,k and er and b) tunes the {er) in response to
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conditioning, suppressing some of them and strengthening others. This tuning is
a form of competitive learning. Both of these activities of the global layer are in

accord with current understanding of the neural architecture and adaptive
processes in the auditory cortex (Weinberger et al, 1990b). The features {yr(O,4}
and (er} are inputs to all of the cortical segments in the local layer
simultaneously. The training of the (er takes place only during conditioning.

The following section describes how to achieve these purposes.

4.2.L Convolution
In this section we describe the operation of the global feature extractor. This

subsystem implements Equation 4.2. It transforms the n inputs tvk( } to the m

outputs {yr( ), where m << n, thereby achieving a reduction of the input data by a

factor n/m. The global feature extractor carries out m convolutions
simultaneously, each convolution yielding a feature Yr (4).

Equation 4.2 includes a variable t (t = 0), denoting the stage of conditioning.

In the rest of the section we will often omit the argument t to simplify our
notation. With this omission Equation 4.2 becomes:

Y,() WkFVk( W
k=1

Below we show that Equation 4.2 (and hence Equation 4.10) represents a

convolution operation with respect to x. Suppose vl( ,) v2(4),...,vn()are even

functions, as illustrated on Figure 4.4, and suppose vk(4) = v(4 - ku). The weights
{wkr) multiply the kernels (vk(4)) in accordance with Equation 4.10. Let y denote

reduction ratio from kernels to features:

n number of kernels (4.11)

m number of features

The weights twkr) may be viewed as a function wr(p o), where

k = ry + p. (4.12)

17
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This equivalence between {wkr) and wr(p a) is illustrated in Figure 4.5.

Here we see that wkr = wr(p o). The feature yr( ) is formed by wr(PFo) and v( -

k~o) as follows:

Y,(4) =... +w,(-4o) (-(,y-i) o)+ w,(O) (4- r o)+ W,(4o) (4-(ry+ ) o) +...

This equation may be written in the following form:

n- r

yr(W = I Wr)WV-(Y + p))
p= -r7

This is equivalent to

n -ry (.3
Yr (0 =  I wr ko) V M{ - r' ) - p401(413

p = 1 -ry

Equation 4.13 represents a convolution between wr( ) and v( -ryto) over integer

multiples of 4o. We denote this symbolically by

yr( W = Wr(4)* v(- riAo), (4.14)

This convolution is represented by the block diagram in Figure 4.6.

This diagram shows yr( ) as the response of a linear system with impulse

response wr( ) to the input signal v(4-ryto) = vr-(4).

18
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figure 4.6: The Global feature extractor
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We now show that Equation 4.13 and Equation 4.10 are equivalent. Note that
w440) = w,,,

v [(- ryo) - p] = - + p) o) = v(4 - kto) = vt (4).

Substituting the right members of these equations into Equation 4.13 when
replacing p by k - ry, we obtain Equation 4.10.
We assumed in our experiments that the kernel v(t) which is used in Equation

4.14 has the following form:

10.5(1+ c05skR[ for W <I
(0) = b!T b(41- 0 otherwise (4.1)

We assume that before conditioning all of the wr(4)'s have the form atow( ),
where a is a scaling constant that is determined experimentally.

wr( )=aow() for all r (4.15)

In our experiments we assumed that w(t) is triangular as follows:

W G o) G (4.16)

0 otherwise.

Figure 4.7 illustrates vk( ) and wr( ). The variables b and G denote the

"bandwidths" of these functions. The constant a is strongly affected by the choice
of the bandwidth b and G. The value of a varies approximately inversely as b and
G.

20
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Figure 4.8(a) shows the set of kernels vk(4) as determined by Equation 4.1,

and Figure 4.8(b) shows the results of convolving these kernels with the weight
functions wr(4) as determined by Equation 4.16.

Now we describe how the parameters 4o, m, n, y, b, G and a, should be

chosen. Recall that 4o represents the difference between the center frequencies of

every pair of adjacent kernels. m denotes number of features. n denotes number
of kernels. y denotes the reduction ratio defined in Equation 4.11. b and G are the
bandwidths of v( ) and w(4) respectively, a is a scaling constant.

Choosinz m.
The value of y is the ratio of m to n. In Section 4.3.1 we show that the

observed values of 4 in ci(4) are spaced by -Ao and that the number of these values
is m. Therefore first we choose m equal to the number of observed values of 4 in

ci(4). (If the observed values of ci(4) are not uniformly spaced then Yto is the
smallest spacing between observed values of 4.)

ChoQsing2t
We choose the value of y to be a large as possible restricted only by practical

computational considerations. We believe that a physiologically based choice of y
may be greater than 1000. But for practical purposes we have chosen y = 5.

Choosing n
The value of n is determined by Equation 4.11.

The value of 4o depends on the number of nonzero samples of v(4) used in the

digital convolution in Equation 4.13. A practical choice of the number of nonzero
samples is 10: more than 10 yields small improvements in the smoothing in the

convolution but at the cost of increased computational complexity; less than 10
increases substantially the aliasing produced by infrequent sampling of v(4) in
Equation 4.13. Let b denote half of the range of values of where v( ) is

significantly greater than zero, as illustrated in Figure 4.7. We refer to b as the
bandwidth of v(4). Thus a practical choice of ko is approximately b/10. (This

choice may vary in practical circumstances by factor of 2). The choice of b is
determined by a trade-off between the smoothness of modeling ci(4) and the
aliasing. In Section 4.3.1 we present a detailed explanation of how to model ci( )
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and how the choice of b influences the quality of the model. We found in our

experiments that a practical choice of b is :

b =It

Let G denote one-half of the range of values of w(4) where w(4) is

significantly greater than 0, as indicated in Figure 4.7(b) and in Equation 4.15.

Our experiments have indicated that a practical choice of G is G = b/2.

The parameter a is chosen experimentally so to satisfy Equations 4.15 and

4.16.

We can represent the operation of the global feature extractor in matrix

form. In particular we can represent 4.10 as a matrix multiplication:

Y =VW

where

n

Yjr Y Vjk Wkr.

k=l

Yjr = yr(jxi),
vjk = vk(jxl),

wkr = Wr(pxo),

xl = sampling interval,

j = sampling index.

Y,V,W, are matrices. The kernel k and the feature number r range over 11,...,n)

and {1,....m} respectively. Matrix W represents the set of weights. Its dimensions

are n by m.

Figure 4.9 illustrates the shape of matrix W viewed as a function of k and r.

This figure shows the triangular shape of {wr( )). In the preconditioning stage
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all the {wr( )} have the same shape. The matrix form may be useful in simulating

the network on a digital computer.

Summarizing, we have 1) assumed that the distribution of the weights
within the matrix W are triangular functions, 2) yr( ) is formed by a convolution

between wr(p~o) and v(4-ryAo), and 3) the number of features m are much smaller

than the number of kernels n. The reduction ratio n/m is denoted by y.

4.2.2. Competitive Learning

In this section we describe how the process of global conditioning is
represented by the global-local model. After the conditioning there are global
changes which have their biggest effects around the conditioning frequency 4c.

The effect is weakened when 4 is far from 4c. During conditioning described in

Steps 4,5 in Section 4.1.4 the weights are changed. (The initial values represent
the preconditioning stage.) Our global-local model provides a simple rule for

changing these weights so as to achieve the tuning of the global feature extractor

during conditioning. This tuning is achieved a- . .. rm of competitive learning,

described below.

We define the global training parrnmeters {e.) for all r. Each er (and each

local scaling parameter hi) multiplies wkr(O) to produce AWkr:

Awk, = hi er wk, (0) = hi e, wr( ) (4.17)

Recall from Equation 4.6 that wkr(O) = the value of wkr(t) for t = 0.

by Equation 4.7 and 4.17,

k=I k=1

In our experiments we have found that the ter) are usually zero for all values of r

except in a small neighborhood where r = 4c / (Of0). This is illustrated in Figure
4.10. hi is the local scaling parameter which is explained in Section 4.3.2.
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This result can be expressed in matrix form as follows:

AW = hiEW(O),

W(1) = W(O)+AW = (I + hiE)W(O)

where E is a diagonal m by m matrix whose rth element is er. Figure 4.11

illustrates a typical form of the matrix AW.
Thus global training in the auditory cortex may be represented by ter) or,

equivalently, by E. A great advantage of the use of ter) is that these parameters

represent the global training process in a very compact form. In many of our
experiments only three nonzero values of er were sufficient to represent the global

training.
We have developed a primitive trial-and-error procedure for finding the er's.

This procedure is closely connected with our procedure for finding the local
scaling parameters (hi). We discuss both of these procedures at the end of Section

4.3.2.

Figure 4.12 illustrates the results of the convolution operation in

postconditioning stage. This figure should be compared to Figure 4.8(a), which
illustrates the results of the convolution in the preconditioning stage. The
functions {yr(l, )) do not have a same shape as {yr(O, )}. The amplitude of the

feature corresponds to kc is bigger than the others.

y ,(1, ) > y ( , 4) for r = -- ,

yr(1,t)<yr(O,F) for r x ± I

Summary of Section 4.2

We have shown how to design the global feature extractor by so as to reduce
the large number of kernels to a small number of features, and how to represent
global training compactly by the parameters {er}.

27



er1

0~ 11 11 
II I II I rA

figure 4.10: Example of ter I.

AW

figure 4.11 Matrix Aw

28



fil 
If

figure 4.12 Results of convolution in postconditioning stage.

29



Weinberger and Sklansky

4.. Local Conditioning
We describe in this Section the details of local training. In the global-local

model training is implemented by the local layer. The local layer consists of a set
of components (Li), where Li produces the receptive field ci(t,4). Each Li consists

of a local trainer and a local discriminant, as illustrated in Figure 4.3 All of the
Li's receive the same set of features {yr(t,4) and the global training parameters

(er). The features (yr(O, )) and the parameters ter) are produced by the global layer

as described in Section 4.2.

The purposes of each Li are : a) to represent the preconditioned receptive

field ci(0,4), b) to account for local scaling in the conditioning process, c) to

account for local tuning in the conditioning process. Local scaling depends on the
overall scale of ci(1,4) - ci(0,4), the difference between the postconditioned and

preconditioned receptive fields. Local tuning depends primarily on the local best
frequency and 4c. Let 4bi denote the local best frequency of, i.e. the value of 4

where ci(0,4) is a maximum. The local tuning affects primarily the amplitude of

ci(1,4) for values of 4 between 4bi and 4c.

Local tuning consists primarily of two phenomena: a shift of the

preconditioning best frequency toward the conditioning frequency and a

suppression of the receptive field at the preconditioning best frequency.
The local tuning implemented by each Li can exhibit either complete

learning or partial learning of the conditioning frequency kc. Complete learning

consists of a full shift of the best frequency to the conditioning frequency ("full

shift") and significant suppression of the receptive field at the preconditioning

best frequency ("suppression"). These changes in the receptive field are

illustrated in Figure 4.13(a). Partial learning may be a result of any of the

following effects: a) no shift or only a partial shift of the postconditioning best

frequency toward the conditioning frequency ("no shift" or "partial shift"); or b)
no suppression of the receptive field at the preconditioning best frequency ( "no

suppression"); or c) both no shift (or partial shift) and no suppression. Figure

4.13(b) illustrates a combination of partial shift and suppression.

In the following section we describe how the model implements the above

properties, namely a) representation of the preconditioning stage, b) local scaling,

and c) local tuning.
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4.3.1. Modeling of Preconditioning
As explained in Section 4.1.4 the ith local discriminant computes the

preconditioning curve ci(0,4) by Equation 4.3. The Air(O)'s are the experimental

data points of the receptive field observed before conditioning. The yr(0,4)'s are the

features which are computed by the global layer before conditioning. We can view
the yr(0,4)'s as interpolation functions. (An interpolation function is usually bell

shaped, as illustrated in Figure 4.8.) The Air(O)'s are discrete samples of a

function to be interpolated and the {yr(0,k)) provide a means of interpolating the

values of ci(0,k) for values of 4 between samples. Thus we need a function yr(O, )

which is effective for interpolation. Let cai(0,) denote the values of the receptive

field observed at the ith cortical pyramidal neuron. (This is to be distinguished
from ci(0,4) produced by the model.)

In our model each Air(O) is set equal to 2i(O , rgto), where ryto is the rth

observed value of 4. Thus in our model ci(O , ry4o) = Ci(O , ryto) for all r. Our model

interpolates ci(O, ) for values of 4 not equal to rAo by the equation:

m

r (=y1 (4.18)m

= I
r=1

where Air(O) = ci(O , ryA0).

The choice of the "bandwidth" b (discussed in Section 4,2.1) affects the

modeling of ci(O, ). Too large a value of b may introduce too much smoothing of

ci(0,4) thereby suppressing important variations in ci(0,4). Too small a value of b

may introducing aliasing in the form of false oscillations in the modeled receptive

field. These effects are illustrated in Figures 4.14, 4.15. Figure 4.14 (a) and (b)

show the aliasing effect. Figure 4.15(a) shows good modeling. Figure 4.15(b)

shows effect of too much smoothing.

4.3a Local Scaling
Local training imparts a scaling effect on the yr(t,)'s. We represent this

effect by the coefficient hi. In order to estimate the value of hi we assume:
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Figure 4.14: The choice of b affects the modeling of c,(0, ). Aliasing effect for
different values of b.
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m m

c Ai(O)yr(Oc)+hi Y, erAi(O)y,(O, ) (4.19)
r~l r=1

Thus hi accounts for the change of ci(t,4) for values of near c.

We have developed a primitive trial-and-error procedure for finding the hi's

and the (eri. Let I denote that value of i such that I i (1, ) - ZI(OA) I > I ci (1,4) - i
(0,4) I for all i. First we assign hl = 1. Then the Jeri are determined so that ci(1,4)

_ I (1,k) for 4 lying in a small neighborhood of 4c. For i * I, the (eri are the
same but hi is adjusted so that cI (1,4) - (1,4) for t = c. This procedure was not
so difficult in our experiments because usually only three nonzero members of (er}

seemed to be sufficient to model the observed change in the receptive fields.

4.3.3. Local Tuning

As explained at the beginning of Section 4.3, the local tuning affects the
value of ci(t,4) for values of 4 primarily between c and bi. We developed a

systematic method to change the weights Air(O)'s according to the local tuning

which occur during conditioning. This method enables us to predict both

complete learning and partial learning. Below we describe our procedure for
modeling local tuning in terms of the Air(t)'s for t=O and t=1.

We define a tuning function Ti( ). This function is constructed by the

following Steps:

Step 1:
By subtracting Equation 4.5 from Equation 4.19 we obtain:

ci(1, ) - ci(O, = hi I eAi,(O)yr(O,4),
r=1
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Let
Aci( ) = Ci(1, ) - ci(O, ). (4.20)

Figure 4.16 shows an idealized example of the function Aci( ).

Step 2:

Let bd = - 4b 1. This quantity is the "bandwidth" of a bell shaped function di(4),

defined as follows:

qc is a coefficient which determines the amplitude of di(t).

j0.5qc( +cos R -C. for -- <l
bd (4.21)

otherwise

Step 3:

We define a negative bell shaped function pi(t). This function expresses the local

negative effect for values of 4 near bi. We assume in this model that

-0.5qb I + COSK for < I14M

bb 0 bb

0 otherwise

there qb is a coefficient which determines the amplitude of pi( ), and bb is the

"bandwidth" of pi( ). This "bandwidth" needs to be small to restrict the effect of

Pi(4) on ci(1,4) to values of t close to bi.
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there qb is a coefficient which determines the amplitude of pi( ), and bb is the
"bandwidth" of pi( ). This "bandwidth" needs to be small to restrict the effect of
pi( ) on ci(1, ) to values of 4 close to 4bi.

Step 4:
The tuning function Ti(4) is obtained by

Ti( ) = qt[Aci(t) - di( ) + pi( )]. (4.23)

Figure 4.17 shows an idealized Ti( ).

The parameters q, and qb, which determine the amplitudes of di(4) and pi(4)
have to be adjusted in order to obtain the best predictions by the model. The
parameter qt is a scaling parameter which is usually equal to 1.
Unfortunately our estimates of these parameters suffered for lack of sufficient
experimental data.

The function Ti(4) displays the negative effect of local tuning near the best
frequency bi and shows the lack of an effect near the conditioning frequency c.
We found that Ti( ) enables the model to predict the postconditioning best

frequency in both complete learning and partial learning.
Let AAir denotes the difference between Air(l) and Air(O) as indicated in

Equation 4.8. Our model computes AAir by 3

AAir = Air (0) Ti (rYo). (4.24)

Th3 weights Aii(0),...,Aim(0) are set equal to experimental data points Zi(0, ry~c)
as described in the second paragraph of Section 4.3.1.

This computation enables the determination of Air(l) by Equation 4.8. Using
these Ar(l)'s the ith receptive field is computed by combining Equation 4.7 and
4.9: we can express ci(1, )
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figure 4.17: The local learning function.
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ci(1, ):Ai,(1)y,(Om)+hi e (4.25)

Here we see that ci(1, ) is expressed in terms of the global training parameters

ter), the local scaling parameter hi, and the adjusted local discriminant weights

(Air(l)}.

There is a possible generalization to the tuning function Ti(4). To account

for conditioning induced suppression of ci(O, ) at more than one local maximum

of ci(O, ), let Pik(t) denote functions of the form:

- 0.5qk 1 + cos for < 1
Pik (b)=  k bk (4.26)

0 otherwise

where qk, bk, and 4k are associated with the kth local maximum in ci(O, ). Then

the generalized Ti(4) will have the form

Ti ( ) = q,[Aci (4) - di (4) + Pi,) + ""+ Pik) •(4.7)

An idealized example of generalized Ti( ) is shown in Figure 4.18.

Summary of Section 4.3

We have shown how to design the local layer so as to account for local
scaling and local tuning -- primarily by the local scaling parameter hi and the

local tuning function Ti(4).

39



42

figure 4.18: The ocal learning function
with local maxima negative behavior.

40



Weinberger and Sklansky

4.4. Neurophysiological Interpretation of the Global-Local Model

Below we suggest a neurophysiological interpretation of each component of
the global local model. These components are illustrated in Figure 4.2. See also
Section 3.2. for a summary of relevant neurophysiological findings.

Resonators
The resonators represent cells of the ventral medial geniculate nucleus of

the thalamus (MGv).

Global Feature Extractor.
The elements of the weight matrix in the global feature extractor represent

synapses from the MGv onto cortical pyramidal cells.

Local Discriminant.
The tuning effect carried out by the local discriminant may reflect

intracortical effects on the synapses of the MGv to pyramidal cells which originate
from other cortical pyramidal cells or from cortical interneurons. Another
possibility is that this represents processes inside of the cortical pyramidal cells
themselves which modulate the global effect.

Conditioning Control Signal.

The conditioning control symbol g represents a signal from the
magnocellular medial geniculate nucleus (MGm) to the cortical pyramidal cells
which indicates. that reinforcement has followed presentation of the conditioning
tone (i.e., that the CS and the UCS are temporally paired).

5.0. Preliminary Evaluation of the Model

We have tested our global local model for its ability to predict postconditioned
receptive fields from preconditioning receptive fields and a knowledge of the
amplitude and frequency of the conditioning tone, using data from our two
electrode experiments. In addition we used data from single-electrode
experiments to help us evaluate the validity of local tuning in our model. (At least
two electrodes are needed in an evaluation of global conditioning.)
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The results of these tests support the proposed model, and encourage us to

develop it further.

5.1. Observed Forms of Local Learning

We observed in the data the following phenomena related to local learning.

1. Local scaling: the range of amplitudes of I ci(1, ) - ci(0, ) I may vary from

one pyramidal cell to another.

2. Local tuning: consists of a shift of the preconditioning best frequency

toward 4, and a suppression of ci (1, ) at the preconditioning best frequency.

Local tuning may display either
a) complete learning of 4c or

b) partial learning of 4c

5.1.2. Predictions

Our model succeeded in predicting the effects of global training, local

scaling, local tuning with both complete learning and partial learning, and it

succeeded in accounting for multiple maxima in preconditioned receptive fields.

We illustrate these predictions for data obtained in Experiment 9a. We refer

to the two electrodes in this experiment as "el" and "e2".

The observed and predicted receptive fields for electrode el in Experiment 9a

are shown in Figures 5.1 and 5.2 and for the electrode e2 in Figures 5.3 and 5.4.
Note that the best frequency for electrode el is greater than c, and that the best

frequency for electrode e2 is less than 4c. Nonetheless, conditioning increased

responses at the training frequency and decreased responses at the pre-training

best frequency in both cases. The curves of the difference between the
postconditioned and preconditioned receptive fields, ci (1, ) - ci (0, ), in Figures 5.2

and 5.4 best display the effect of conditioning. The predicted difference curves in

these figures display the effect of local tuning including the suppression at the
best frequencies, and increased responses at c.
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figure 5.1 Experiment 9a, electrode el, global-local training. (a) Observed
points of processed preconditioning receptive field are marked by *,predicted
points by o. (b) Similarly for post observed and predicted points.
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6. Summary and Conclusions

Evolution has, by natural selection, produced a wide variety of exquisitely

sensitive and highly specific biological mechanisms that produce adaptive

behavior and species survival. Our recent discovery that sensory neocortex,
specifically the auditory cortex, operates on the principle of adaptive filtering,
while surprising and unanticipated in the field of sensory neurobiology, fits

within the Darwinian framework at two levels.

First, natural selection has provided brains which can 'fine tune" an
organism for the environment within which it develops and lives. In this sense,

learning processes begin where information specified by the genome ends.

because information specified by the gene cannot be sufficiently specific to the

varied environments within which an animal finds itself.

Second, while "fine tuning" is a metaphor for learning, it is also an actual
description of the operation of the auditory cortex. That is, the cortex is finely

tuned by learning to match not simply the physical environment, but also the

behaviorally-significant environment. Moreover, the process of adaptive filtering,

by which this occurs, appears to be selectionistic in a real competitive sense.

Behaviorally important stimuli gain at the expense of less important stimuli in

the responses of cortical cells and undoubtedly in the area of the cortex which they
command. In short, adaptive filtering seems to be a fundamental process, well

honed in evolution.

Although our global-local model is the first which has addressed adaptive

filtering in the auditory cortex, it has surprising accuracy and power. While we

do not claim that this model provides a complete and exhaustive account of

adaptive filtering, nonetheless its successes should not be minimized. The model

is both highly structured and quantitative yet sufficiently flexible to account for a
wide variety of individual expressions of adaptive plasticity. A unique feature of

the model is its incorporation of both global and local learning processes. Either

one alone cannot account for adaptive filtering. A hallmark of our global-local
model is that it is based upon anatomical and functional architectures, that is, it

operates within the biological constraints of brain operation. This contrasts

sharply with models in which networks are based on random connectivity.

It is almost always the case that more research and refinement a,-e needed;
the results of the present relatively brief project are no exception. Yet, the global-
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local model is sufficiently well developed to serve as an impetus for the creation of

prototype auditory learning systems.
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